3.400 \(\int x^4 (d+e x)^3 (a+b x^2)^p \, dx\)

Optimal. Leaf size=249 \[ \frac{a^2 e \left (3 b d^2-a e^2\right ) \left (a+b x^2\right )^{p+1}}{2 b^4 (p+1)}-\frac{3 a e \left (2 b d^2-a e^2\right ) \left (a+b x^2\right )^{p+2}}{2 b^4 (p+2)}+\frac{3 e \left (b d^2-a e^2\right ) \left (a+b x^2\right )^{p+3}}{2 b^4 (p+3)}+\frac{e^3 \left (a+b x^2\right )^{p+4}}{2 b^4 (p+4)}-\frac{d x^5 \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (15 a e^2-b d^2 (2 p+7)\right ) \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};-\frac{b x^2}{a}\right )}{5 b (2 p+7)}+\frac{3 d e^2 x^5 \left (a+b x^2\right )^{p+1}}{b (2 p+7)} \]

[Out]

(a^2*e*(3*b*d^2 - a*e^2)*(a + b*x^2)^(1 + p))/(2*b^4*(1 + p)) + (3*d*e^2*x^5*(a + b*x^2)^(1 + p))/(b*(7 + 2*p)
) - (3*a*e*(2*b*d^2 - a*e^2)*(a + b*x^2)^(2 + p))/(2*b^4*(2 + p)) + (3*e*(b*d^2 - a*e^2)*(a + b*x^2)^(3 + p))/
(2*b^4*(3 + p)) + (e^3*(a + b*x^2)^(4 + p))/(2*b^4*(4 + p)) - (d*(15*a*e^2 - b*d^2*(7 + 2*p))*x^5*(a + b*x^2)^
p*Hypergeometric2F1[5/2, -p, 7/2, -((b*x^2)/a)])/(5*b*(7 + 2*p)*(1 + (b*x^2)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.235465, antiderivative size = 241, normalized size of antiderivative = 0.97, number of steps used = 7, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1652, 459, 365, 364, 446, 77} \[ \frac{a^2 e \left (3 b d^2-a e^2\right ) \left (a+b x^2\right )^{p+1}}{2 b^4 (p+1)}-\frac{3 a e \left (2 b d^2-a e^2\right ) \left (a+b x^2\right )^{p+2}}{2 b^4 (p+2)}+\frac{3 e \left (b d^2-a e^2\right ) \left (a+b x^2\right )^{p+3}}{2 b^4 (p+3)}+\frac{e^3 \left (a+b x^2\right )^{p+4}}{2 b^4 (p+4)}+\frac{1}{5} d x^5 \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (d^2-\frac{15 a e^2}{2 b p+7 b}\right ) \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};-\frac{b x^2}{a}\right )+\frac{3 d e^2 x^5 \left (a+b x^2\right )^{p+1}}{b (2 p+7)} \]

Antiderivative was successfully verified.

[In]

Int[x^4*(d + e*x)^3*(a + b*x^2)^p,x]

[Out]

(a^2*e*(3*b*d^2 - a*e^2)*(a + b*x^2)^(1 + p))/(2*b^4*(1 + p)) + (3*d*e^2*x^5*(a + b*x^2)^(1 + p))/(b*(7 + 2*p)
) - (3*a*e*(2*b*d^2 - a*e^2)*(a + b*x^2)^(2 + p))/(2*b^4*(2 + p)) + (3*e*(b*d^2 - a*e^2)*(a + b*x^2)^(3 + p))/
(2*b^4*(3 + p)) + (e^3*(a + b*x^2)^(4 + p))/(2*b^4*(4 + p)) + (d*(d^2 - (15*a*e^2)/(7*b + 2*b*p))*x^5*(a + b*x
^2)^p*Hypergeometric2F1[5/2, -p, 7/2, -((b*x^2)/a)])/(5*(1 + (b*x^2)/a)^p)

Rule 1652

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int x^4 (d+e x)^3 \left (a+b x^2\right )^p \, dx &=\int x^4 \left (a+b x^2\right )^p \left (d^3+3 d e^2 x^2\right ) \, dx+\int x^5 \left (a+b x^2\right )^p \left (3 d^2 e+e^3 x^2\right ) \, dx\\ &=\frac{3 d e^2 x^5 \left (a+b x^2\right )^{1+p}}{b (7+2 p)}+\frac{1}{2} \operatorname{Subst}\left (\int x^2 (a+b x)^p \left (3 d^2 e+e^3 x\right ) \, dx,x,x^2\right )+\left (d \left (d^2-\frac{15 a e^2}{7 b+2 b p}\right )\right ) \int x^4 \left (a+b x^2\right )^p \, dx\\ &=\frac{3 d e^2 x^5 \left (a+b x^2\right )^{1+p}}{b (7+2 p)}+\frac{1}{2} \operatorname{Subst}\left (\int \left (-\frac{a^2 e \left (-3 b d^2+a e^2\right ) (a+b x)^p}{b^3}+\frac{3 a e \left (-2 b d^2+a e^2\right ) (a+b x)^{1+p}}{b^3}+\frac{3 \left (b d^2 e-a e^3\right ) (a+b x)^{2+p}}{b^3}+\frac{e^3 (a+b x)^{3+p}}{b^3}\right ) \, dx,x,x^2\right )+\left (d \left (d^2-\frac{15 a e^2}{7 b+2 b p}\right ) \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int x^4 \left (1+\frac{b x^2}{a}\right )^p \, dx\\ &=\frac{a^2 e \left (3 b d^2-a e^2\right ) \left (a+b x^2\right )^{1+p}}{2 b^4 (1+p)}+\frac{3 d e^2 x^5 \left (a+b x^2\right )^{1+p}}{b (7+2 p)}-\frac{3 a e \left (2 b d^2-a e^2\right ) \left (a+b x^2\right )^{2+p}}{2 b^4 (2+p)}+\frac{3 e \left (b d^2-a e^2\right ) \left (a+b x^2\right )^{3+p}}{2 b^4 (3+p)}+\frac{e^3 \left (a+b x^2\right )^{4+p}}{2 b^4 (4+p)}+\frac{1}{5} d \left (d^2-\frac{15 a e^2}{7 b+2 b p}\right ) x^5 \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};-\frac{b x^2}{a}\right )\\ \end{align*}

Mathematica [A]  time = 0.215936, size = 249, normalized size = 1. \[ \frac{1}{70} \left (a+b x^2\right )^p \left (\frac{105 d^2 e \left (a+b x^2\right ) \left (2 a^2-2 a b (p+1) x^2+b^2 \left (p^2+3 p+2\right ) x^4\right )}{b^3 (p+1) (p+2) (p+3)}+\frac{35 e^3 \left (a+b x^2\right ) \left (6 a^2 b (p+1) x^2-6 a^3-3 a b^2 \left (p^2+3 p+2\right ) x^4+b^3 \left (p^3+6 p^2+11 p+6\right ) x^6\right )}{b^4 (p+1) (p+2) (p+3) (p+4)}+14 d^3 x^5 \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{5}{2},-p;\frac{7}{2};-\frac{b x^2}{a}\right )+30 d e^2 x^7 \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{7}{2},-p;\frac{9}{2};-\frac{b x^2}{a}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^4*(d + e*x)^3*(a + b*x^2)^p,x]

[Out]

((a + b*x^2)^p*((105*d^2*e*(a + b*x^2)*(2*a^2 - 2*a*b*(1 + p)*x^2 + b^2*(2 + 3*p + p^2)*x^4))/(b^3*(1 + p)*(2
+ p)*(3 + p)) + (35*e^3*(a + b*x^2)*(-6*a^3 + 6*a^2*b*(1 + p)*x^2 - 3*a*b^2*(2 + 3*p + p^2)*x^4 + b^3*(6 + 11*
p + 6*p^2 + p^3)*x^6))/(b^4*(1 + p)*(2 + p)*(3 + p)*(4 + p)) + (14*d^3*x^5*Hypergeometric2F1[5/2, -p, 7/2, -((
b*x^2)/a)])/(1 + (b*x^2)/a)^p + (30*d*e^2*x^7*Hypergeometric2F1[7/2, -p, 9/2, -((b*x^2)/a)])/(1 + (b*x^2)/a)^p
))/70

________________________________________________________________________________________

Maple [F]  time = 0.516, size = 0, normalized size = 0. \begin{align*} \int{x}^{4} \left ( ex+d \right ) ^{3} \left ( b{x}^{2}+a \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(e*x+d)^3*(b*x^2+a)^p,x)

[Out]

int(x^4*(e*x+d)^3*(b*x^2+a)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{3}{\left (b x^{2} + a\right )}^{p} x^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(b*x^2+a)^p,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(b*x^2 + a)^p*x^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{3} x^{7} + 3 \, d e^{2} x^{6} + 3 \, d^{2} e x^{5} + d^{3} x^{4}\right )}{\left (b x^{2} + a\right )}^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(b*x^2+a)^p,x, algorithm="fricas")

[Out]

integral((e^3*x^7 + 3*d*e^2*x^6 + 3*d^2*e*x^5 + d^3*x^4)*(b*x^2 + a)^p, x)

________________________________________________________________________________________

Sympy [C]  time = 87.2607, size = 3079, normalized size = 12.37 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(e*x+d)**3*(b*x**2+a)**p,x)

[Out]

a**p*d**3*x**5*hyper((5/2, -p), (7/2,), b*x**2*exp_polar(I*pi)/a)/5 + 3*a**p*d*e**2*x**7*hyper((7/2, -p), (9/2
,), b*x**2*exp_polar(I*pi)/a)/7 + 3*d**2*e*Piecewise((a**p*x**6/6, Eq(b, 0)), (2*a**2*log(-I*sqrt(a)*sqrt(1/b)
 + x)/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) + 2*a**2*log(I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**3 + 8*a*b**
4*x**2 + 4*b**5*x**4) + a**2/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) + 4*a*b*x**2*log(-I*sqrt(a)*sqrt(1/b)
 + x)/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) + 4*a*b*x**2*log(I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**3 + 8*a
*b**4*x**2 + 4*b**5*x**4) + 2*b**2*x**4*log(-I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x*
*4) + 2*b**2*x**4*log(I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4) - 2*b**2*x**4/(4*a*
*2*b**3 + 8*a*b**4*x**2 + 4*b**5*x**4), Eq(p, -3)), (-2*a**2*log(-I*sqrt(a)*sqrt(1/b) + x)/(2*a*b**3 + 2*b**4*
x**2) - 2*a**2*log(I*sqrt(a)*sqrt(1/b) + x)/(2*a*b**3 + 2*b**4*x**2) - 2*a**2/(2*a*b**3 + 2*b**4*x**2) - 2*a*b
*x**2*log(-I*sqrt(a)*sqrt(1/b) + x)/(2*a*b**3 + 2*b**4*x**2) - 2*a*b*x**2*log(I*sqrt(a)*sqrt(1/b) + x)/(2*a*b*
*3 + 2*b**4*x**2) + b**2*x**4/(2*a*b**3 + 2*b**4*x**2), Eq(p, -2)), (a**2*log(-I*sqrt(a)*sqrt(1/b) + x)/(2*b**
3) + a**2*log(I*sqrt(a)*sqrt(1/b) + x)/(2*b**3) - a*x**2/(2*b**2) + x**4/(4*b), Eq(p, -1)), (2*a**3*(a + b*x**
2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 12*b**3) - 2*a**2*b*p*x**2*(a + b*x**2)**p/(2*b**3*p**3 + 12*b
**3*p**2 + 22*b**3*p + 12*b**3) + a*b**2*p**2*x**4*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 1
2*b**3) + a*b**2*p*x**4*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 12*b**3) + b**3*p**2*x**6*(a
 + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p + 12*b**3) + 3*b**3*p*x**6*(a + b*x**2)**p/(2*b**3*p**3
+ 12*b**3*p**2 + 22*b**3*p + 12*b**3) + 2*b**3*x**6*(a + b*x**2)**p/(2*b**3*p**3 + 12*b**3*p**2 + 22*b**3*p +
12*b**3), True)) + e**3*Piecewise((a**p*x**8/8, Eq(b, 0)), (6*a**3*log(-I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4
 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**6) + 6*a**3*log(I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36
*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**6) + 2*a**3/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 +
 12*b**7*x**6) + 18*a**2*b*x**2*log(-I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x*
*4 + 12*b**7*x**6) + 18*a**2*b*x**2*log(I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6
*x**4 + 12*b**7*x**6) + 18*a*b**2*x**4*log(-I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*
b**6*x**4 + 12*b**7*x**6) + 18*a*b**2*x**4*log(I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36
*a*b**6*x**4 + 12*b**7*x**6) - 9*a*b**2*x**4/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**6
) + 6*b**3*x**6*log(-I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**
6) + 6*b**3*x**6*log(I*sqrt(a)*sqrt(1/b) + x)/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**
6) - 9*b**3*x**6/(12*a**3*b**4 + 36*a**2*b**5*x**2 + 36*a*b**6*x**4 + 12*b**7*x**6), Eq(p, -4)), (-6*a**3*log(
-I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 6*a**3*log(I*sqrt(a)*sqrt(1/b) + x)/(4
*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 3*a**3/(4*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 12*a**2*b*x**
2*log(-I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 12*a**2*b*x**2*log(I*sqrt(a)*sqr
t(1/b) + x)/(4*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 6*a*b**2*x**4*log(-I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*
b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) - 6*a*b**2*x**4*log(I*sqrt(a)*sqrt(1/b) + x)/(4*a**2*b**4 + 8*a*b**5*x**2
+ 4*b**6*x**4) + 6*a*b**2*x**4/(4*a**2*b**4 + 8*a*b**5*x**2 + 4*b**6*x**4) + 2*b**3*x**6/(4*a**2*b**4 + 8*a*b*
*5*x**2 + 4*b**6*x**4), Eq(p, -3)), (6*a**3*log(-I*sqrt(a)*sqrt(1/b) + x)/(4*a*b**4 + 4*b**5*x**2) + 6*a**3*lo
g(I*sqrt(a)*sqrt(1/b) + x)/(4*a*b**4 + 4*b**5*x**2) + 6*a**3/(4*a*b**4 + 4*b**5*x**2) + 6*a**2*b*x**2*log(-I*s
qrt(a)*sqrt(1/b) + x)/(4*a*b**4 + 4*b**5*x**2) + 6*a**2*b*x**2*log(I*sqrt(a)*sqrt(1/b) + x)/(4*a*b**4 + 4*b**5
*x**2) - 3*a*b**2*x**4/(4*a*b**4 + 4*b**5*x**2) + b**3*x**6/(4*a*b**4 + 4*b**5*x**2), Eq(p, -2)), (-a**3*log(-
I*sqrt(a)*sqrt(1/b) + x)/(2*b**4) - a**3*log(I*sqrt(a)*sqrt(1/b) + x)/(2*b**4) + a**2*x**2/(2*b**3) - a*x**4/(
4*b**2) + x**6/(6*b), Eq(p, -1)), (-6*a**4*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b*
*4*p + 48*b**4) + 6*a**3*b*p*x**2*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48
*b**4) - 3*a**2*b**2*p**2*x**4*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b*
*4) - 3*a**2*b**2*p*x**4*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) +
a*b**3*p**3*x**6*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + 3*a*b**3
*p**2*x**6*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + 2*a*b**3*p*x**
6*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + b**4*p**3*x**8*(a + b*x
**2)**p/(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + 6*b**4*p**2*x**8*(a + b*x**2)**p/
(2*b**4*p**4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + 11*b**4*p*x**8*(a + b*x**2)**p/(2*b**4*p*
*4 + 20*b**4*p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4) + 6*b**4*x**8*(a + b*x**2)**p/(2*b**4*p**4 + 20*b**4*
p**3 + 70*b**4*p**2 + 100*b**4*p + 48*b**4), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (e x + d\right )}^{3}{\left (b x^{2} + a\right )}^{p} x^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x+d)^3*(b*x^2+a)^p,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(b*x^2 + a)^p*x^4, x)